Artificial Intelligence in the Perspectives of Agricultural Technology Development in Indonesia
Abstract
The agricultural sector is a sector supporting economy and welfare of many people in Indonesia. The direction of life development of Indonesian people themselves has been headed todominant direction, preferring practical and dynamic activity. This of course indirectly influences the point of view of the farmers to do their farming activities using more practical and modern things. Traditional ways have gradually been abandoned, although there are still some farmers we still use them. The development of modern technology in all fields, particularly in agriculture, is certainly very helpful for farmers in terms of saving time and energy. Artificial intelligence systems adopting human mindset into a computer programming language can create technology that works like a human, with training data that has been examined into programming languages.
Keywords
Full Text:
PDFReferences
Ashari, A. F., Anggraini, W., & Mukhlason, A. (2012). Implementasi fuzzy neural network pada sistem cerdas untuk pendeteksian dan penanganan dini penyakit sapi. Jurnal Teknik ITS, 1(1), A385-A390.
Astuti, R.W., Waluyo, H.J., and Rohmadi, M. (2019). Character Education Values in Animation Movie of Nussa and Rarra. Budapest International Research and Critics Institute-Journal (BIRCI-Journal). P. 215-219.
Azhar,A. (2018). Students’ Trends in Islamic Communication Postgraduate in2010-2016 State Islamic University of North Sumatera (UINSU). Budapest International Research and Critics Institute (BIRCI-Journal), P.206-214.
Chang, S.-H., & Wan, S. (2015). A novel study on ant-based clustering for paddy rice image classification. Arabian Journal of Geosciences, 8(8), 6305-6316.
DIIN, M. T. (2018). RANCANG BANGUN ALAT SEMPROT HAMA BERBASIS PANEL SURYA 100 WP (PEMBUATAN). POLITEKNIK NEGERI SRIWIJAYA.
DJAU, R. A. (2009). Faktor Risiko Kejadian Anemia dan Keracunan Pestisida pada pekerja Penyemprot Gulma di Kebun Kelapa Sawit PT. Agro Indomas Kab. Seruyan Kalimantan Tengah. UNIVERSITAS DIPONEGORO.
Domingues, D. S., Takahashi, H. W., Camara, C. A., & Nixdorf, S. L. (2012). Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Computers and electronics in agriculture, 84, 53-61.
Hossain, M. S., Ong, Z. C., Ismail, Z., Noroozi, S., & Khoo, S. Y. (2017). Artificial neural networks for vibration based inverse parametric identifications: A review. Applied Soft Computing, 52, 203-219.
Jennings, N. R. (2000). On agent-based software engineering. Artificial intelligence, 117(2), 277-296.
Listiyono, H. (2008). Merancang dan Membuat Sistem Pakar. Dinamik, 13(2).
Luger, G. F. (2005). Artificial intelligence: structures and strategies for complex problem solving: Pearson education.
Marengo, E., Robotti, E., Righetti, P. G., & Antonucci, F. (2003). New approach based on fuzzy logic and principal component analysis for the classification of two-dimensional maps in health and disease: application to lymphomas. Journal of Chromatography A, 1004(1-2), 13-28.
Marsela, T., Sadjad, R. S., & Achmad, A. (2013). Sistem kendali intensitas cahaya rumah kaca cerdas pada budidaya bunga krisan: Universitas Hasanudin Press. Makasar.
Megantara, I. G. A., Wijaya, I. M. A. S., & Budisanjaya, I. P. G. (2018). ALGORITMA IMAGE PROCESSING PENDUGAAN LUASAN SERANGAN PENYAKIT TUNGRO PADA PADI MELALUI PENDEKATAN FOTO UDARA. Jurnal Ilmiah Rekayasa Pertanian dan Biosistem, 6(2), 188-196.
Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems engineering, 114(4), 358-371.
MUQODAS, A. U. PENGEMBANGAN PERANGKAT EVALUASI MUTU TEH.
Murdianto, D., & Santoso, D. (2019). Pemodelan Mesin Pengering Biji-Bijian Tipe Batch Menggunakan Hybrid Petri Net. Jurnal Pertanian Berkelanjutan, 7(2), 115-120.
Nasution, H. (2012). Implementasi Logika Fuzzy pada Sistem Kecerdasan Buatan. ELKHA, 4(2).
Prabowo, A. (2016). Kebijakan antisipatif pengembangan mekanisasi pertanian. Analisis Kebijakan Pertanian, 11(1), 27-44.
Prabowo, A., & Mulyantara, F. (2018). Grand design: BBP Mekanisasi Pertanian.
Saleh, A., Mujahiddin. (2020). Challenges and Opportunities for Community Empowerment Practices in Indonesia during the Covid-19 Pandemic through Strengthening the Role of Higher Education. Budapest International Research and Critics Institute-Journal (BIRCI-Journal). Volume 3, No 2, Page: 1105-1113
Salomon, G., Perkins, D. N., & Globerson, T. (1991). Partners in cognition: Extending human intelligence with intelligent technologies. Educational researcher, 20(3), 2-9.
Santoso, D., Muhidong, D., & Mursalim, M. (2018). Model Matematis Pengeringan Lapisan Tipis Biji Kopi Arabika (Coffeae arabica) Dan Biji Kopi Robusta (Coffeae cannephora). Jurnal Teknologi Pertanian Andalas, 22(1), 86-95.
Sirait, S., & Maryati, S. (2019). Sistem Kontrol Irigasi Sprinkler Otomatis Bertenaga Surya di Kelompok Tani Kecamatan Meureubo Kabupaten Aceh Barat. Jurnal Irigasi, 13(1), 55-66.
Solahudin, M., Seminar, K. B., Astika, I. W., & Buono, A. (2010). Pendeteksian Kerapatan dan Jenis Gulma dengan Metode Bayes dan Analisis Dimensi Fraktal untuk Pengendalian Gulma Secara Selektif. Jurnal Keteknikan Pertanian, 24(2).
Susilo, L. W. (2016). Sistem Cerdas Penyortir Jeruk Berdasarkan Warna dan Ukuran Berbasis Mikrokontroler. Tugas Akhir Jurusan Teknik Elektro-Fakultas Teknik UM.
Timmer*, C. P. (2004). The road to pro-poor growth: the Indonesian experience in regional perspective. Bulletin of Indonesian Economic Studies, 40(2), 177-207.
Wijaya, N. H., Soesanti, I., & Firmansyah, E. (2017). Klasifikasi Suara Jantung Menggunakan Neural Network Backpropagation Berbasis Ciri Statistis. Prosiding SNATIF, 89-96.
Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big data in smart farming–a review. Agricultural Systems, 153, 69-80.
Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and electronics in agriculture, 36(2-3), 113-132.
DOI: https://doi.org/10.33258/birci.v5i1.4141
Article Metrics
Abstract view : 93 timesPDF - 36 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.