Spatial Phenomenon of Multidimentional Poverty in Sumatera Island

Zulfa Emalia, Ida Budiarty

Abstract


This research aims to analyze the conditions and developments, and factors affecting the provincial Multidimentional Poverty in Sumatera Island. The analysis methods that used in this research are spatial concepts and non-spatial concepts. The independent variable that used are Open Unemployment Rate, Per-capita Spending Rate, and The Level of Proper Sanitation. Results of this research suggest that Multidimentional Poverty shows a trend that decreases each year. Additionally, there is spatial autocorrelation of Multidimentional Poverty in the Province of Sumatera Island. Based on the estimation result, there is a positive significant effect of Open Unemployment Rate on Multidimentional Poverty without spatial concepts. And also, Per-capita Spending Rate as well as The Level of Proper Sanitation show a negative significant effect on Multidimentional Poverty without spatial concepts.


Keywords


Multidimentional poverty; spatial autocorrelation; spatial concept.

Full Text:

PDF

References


Alkire, S. (2015). Constructing a multidimensional poverty measure. OPHI Working Paper.

Anselin, L. (1998). Spatial Econometrics: Methods and Models. In Journal of Chemical Information and Modeling (Vol. 110, Issue 9).

Bass, H. H. (2009). Ragnar Nurkse’s development theory: Influences and perceptions. Ragnar Nurkse (1907-2007): Classical Development Economics and Its Relevance for Today, January 2009, 183–202. https://doi.org/10.7135/UPO9781843318194.011

BPS. (2018). Statistik Indonesia 2018 (BPS (ed.)). BPS.

Budiantoro, S., Fanggidae, V., Saputra, W., Maftuchan, A., & Artha, D. R. P. (2013). Multidimensional Poverty Index (MPI): Konsep dan Pengukurannya di Indonesia. PRAKARSA Economic Policy Working Paper.

Corcoran, M., & Hill, M. S. (1980). Unemployment and poverty. Social Service Review, 54(3), 407–413. https://doi.org/10.1086/643847

Gan, L. (2013). Income Inequality and Consumption in China. August.

Hurd, M., & Rohwedder, S. (2017). Economic Well-Being at Older Ages: Income- and Consumption-Based Poverty Measures in the HRS. Economic Well-Being at Older Ages: Income- and Consumption-Based Poverty Measures in the HRS. https://doi.org/10.7249/wr410

Mankiw, N. G. (2010). Macroeconomics (7th Ed). In Worth Publishers.

Massaid, A., Hanif, M., Febrianti, D., & Chamidah, N. (2019). Modelling of Poverty Percentage of Non-Food per Capita Expenditures in Indonesia Using Least Square Spline Estimator. IOP Conference Series: Materials Science and Engineering, 546(5). https://doi.org/10.1088/1757-899X/546/5/052044

Rizki, B., & Saleh, S. (2007). Keterkaitan Akses Sanitasi dan Tingkat Kemiskinan: Studi Kasus di Provinsi Jawa Tengah. http://www.ghbook.ir/index.php?name=مجموعه مقالات دومین هم اندیشی سراسری رسانه تلویزیون و سکولاریسم&option=com_dbook&task=readonline&book_id=13629&page=108&chkhashk=03C706812F&Itemid=218〈=fa&tmpl=component

Sukirno, S. (2011). Teori Pengantar Ekonomi Makro. In Jakarta.

Suryani, E., & Rachman, H. P. S. (2008). Perubahan Pola Konsumsi Pangan Sumber Karbohidrat di Perdesaan. Jurnal Pangan, 52(17), 13–25.

Thurow, L. C. (1967). The causes of poverty. Quarterly Journal of Economics, 81(1), 39–57. https://doi.org/10.2307/1879672

Widarjono, A. (2017). Ekonometrika Pengantar dan Aplikasinya. In UPP STIM YKPN. UPP STIM YKPN.

Wong, D. W.-S., & Lee, J. (2005). Statistical anaylysis of geographic information with ArcView GIS and ArcGIS. In Barnes & Noble (Vol. 1). https://www.barnesandnoble.com/w/statistical-analysis-of-geographic-information-with-arcview-gis-and-arcgis-david-w-s-wong/1101196076




DOI: https://doi.org/10.33258/birci.v5i1.4485

Article Metrics

Abstract view : 25 times
PDF - 22 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.