Classification of the Nave Bayes Method in Determining the Concentration of Information Programs

Mia Miskiatul Atiroh

Abstract


The Faculty of Information Technology is one of the faculties at Serang Raya University which has three study programs, namely Information Systems (IS), Computer Engineering and Informatics. In the informatics study program there are two concentrations, namely programming and multimedia concentrations. Determination of concentration cannot be separated from student supervision, on the other hand, academics must have their own policies in determining student concentration. The method used in this research is Nave Bayes which has 10 variables, namely Algorithm, Calculus I, Internet Html, Commerce Package Program, Graphic Design, Hardware & Software, Calculus II, Data Communication, Introduction to Object Oriented I, Introduction to Information Technology. In this study, there were 248 student data from the informatics study program where 100 student data consisted of students who had taken concentration and 148 data were students who had not taken concentration. In the calculation of 100 student data who have taken concentration, it is known that the number of data with programming concentration is 87 students while for multimedia concentration there are 13 students. Furthermore, the 100 data is divided into 80 training data and 20 testing data using random sampling technique. Based on student academic data which was used as testing data, the Naive Bayes method was successful in classifying 20 student data from 100 student data. Thus, the Naive Bayes method is successful in classifying concentrations with an accuracy success rate of 0.80 (80%) and an accuracy of 0.565 Kappa statistics so that the concentration selection using the Nave Bayes classifier method is accurate.


Keywords


Concentration; naïve bayes; success rate; kappa statistics

Full Text:

PDF

References


Ayu, I. G., & Saryanti, D. (2019). "Penerapan Teknik Clustering Untuk Pengelompokan Konsetrasi Mahasiswa Dengan Metode K-Means," Universitas Dakyana Pura, Tahun 2017, Hal.519-526.

Dimitoglou, G., Adams, J. A., & Jim, C. M. (2016). "Perbandingan Kinerja Algoritma C4.5 Dan Naive Bayes Untuk Ketepatan Pemilihan Konsentrasi Mahasiswa. 1(2012)," Jurnal Informa Politeknik Indonusa Surakarta Vol. 1 Nomor 3 Tahun 2016, Hal. 61-67.

Antony Anwari Rahman Dan Agus Suryanto. (2017). "Implementasi Sistem Informasi Seleksi Penerima Beasiswa Dengan Metode Naive Bayes Classifier," Jurnal Penelitian Pendidikan Indonesia (Jppi) Vol. 2, No. 3, Tahun 2017, Hal. 1-8.

Fitria, A., & Azis, H. (2018). "Analisis Kinerja Sistem Klasifikasi Skripsi Menggunakan Metode Naïve Bayes Classifier. Prosiding Seminar Nasional Ilmu Komputer Dan Teknologi Informasi," Prosiding Seminar Nasional Ilmu Komputer Dan Teknologi Informasi Vol. 3, No. 2, Tahun 2018, Hal. 102-106.

Luh, N., Sri, W., Ginantra, R., & Wardani, N. W. (2019). "Implementasi Metoda Naïve Bayes Dan Vector Space Model Dalam Deteksi Kesamaan Artikel Jurnal Berbahasa," Jurnal Infomedia Vol. 4 No. Tahun 2019, Hal. 94-100.

Mahfudh, A. A., Mustofa, H., Islam, U., Walisongo, N., & Indonesia, S. (2019). "Klasifikasi Pemahaman Santri Dalam Pembelajaran Kitab Kuning Menggunakan Algoritma Naive Bayes Berbasis Forward Selection," Walisongo Journal Of Information Technology, Vol. 1 No. 2, Tahun 2019, Hal. 101-110.

Manga, A. R. (2018). "Penerapan Metode Naïve Bayes Pada Klasifikasi Judul Jurnal," Prosiding Seminar Nasional Ilmu Komputer Dan Teknologi Informasi Vol. 3, No. 2, Tahun 2018, Hal. 92-101

Munandar T. A., (2019) “ Data Mining Dengan Bahasa R Revisi-3” Tahun 2019

Maulida, L. (2018). "Penerapan Data Mining Dalam Mengelompokkan Kunjungan Wisatawan Ke Objek Wisata Unggulan Di Prov. Dki Jakarta Dengan K-Means," Jiska (Jurnal Informatika Sunan Kalijaga), Vol. 2, No. 3, Tahun 2018, Hal.. 167–174.

Mustofa M. S., & Rahmadhan M. R., (2017). "implementasi data mining untuk evaluasi kinerja akademik mahasiswa menggunakan alogoritma naïve bayes" Citi c Journal Vol.4 No.2, Tahun 2017, Hal. 151-162

Muqorobin, M., Kusrini, K., & Luthfi, E. T. (2019). "Optimasi Metode Naive Bayes Dengan Feature Selection Information Gain Untuk Prediksi Keterlambatan Pembayaran Spp Sekolah," Jurnal Ilmiah Sinus (Jis) Vol : 17, No. 01, Tahun 2019, Hal. 1-14.

Nugroho, M. F., & Wibowo, S. (2017). "Fitur Seleksi Forward Selection Untuk Menetukan Atribut Yang Berpengaruh Pada Klasifikasi Kelulusan Mahasiswa Fakultas Ilmu Komputer Unaki Semarang Menggunakan Algoritma Naive Bayes," Jurnal Informatika Upgris Vol. 3, No. 1, Tahun 2017, Hal. 63-70

Olivita, D., & Vitriani, Y. (2016). "Perbandingan Klasifikasi Tugas Akhir Mahasiswa Jurusan Teknik Informatika Menggunakan Metode Naïve Bayes Classifier Dan K-Nearest Neighbor," Jurnal Sains, Teknologi dan Industri, Vol. 14, No. 1, Tahun 2016, Hal. 79 - 85

Pratama, T., & Komputer, F. I. (2018). "Implementasi Algoritma Naive Bayes Dalam. Menentukan Konsentrasi Skripsi Dan Rekomendasi Bahasa Pemrograman," Jurnal Informatika, Vol. 18, No.1, Tahun 2018, Hal. 1-13

Saleh, A., & Mulia, T.,. (2015). "Penerapan Data Mining Dalam Menentukan. Jurusan Siswa," Seminar Nasional Informatika, Tahun 2015, Hal. 351-355

Saleh, A., Nasari, F., Utama, U. P., & Siswa, K. J. (2018). "Penggunaan Teknik Unsupervised Discretization Pada Metode Naive Bayes Dalam Menentukan Jurusan Siswa," Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) Vol. 5, No. 3, Tahun 2018, Hal. 353-360

Setiawan, A., Astuti, I. F., & Kridalaksana, A. H. (2015). "Klasifikasi Dan Pencarian Buku Referensi Akademik Menggunakan Metode Naïve Bayes Classifier ( Nbc )," Jurnal Informatika Mulawarman Vol. 10 No. 1, Tahun 2015, Hal. 1-10.

Supriyanti, W., Kusrini, & Amborowati, A., (2016) "Perbandingan Kinerja Algoritma C4.5 dan Naïve Bayes untuk Ketetapan pemilihan konsentrasi mahasiswa," Jurnal Informa Politeknik Indonesia Surakarta, Vol. 1 NO.3, Tahun 2016, Hal.61-67.

Wibisono, A. B., & Fahrurozi, A., (2019) " Perbandingan algoritma klasifikasi dalam pengklasifikasikan data penyakit jantung koroner," jurnal ilmiah teknologi dan rekayasa Vol. 24 No.3, Tahun 2019, Hal.161-170.




DOI: https://doi.org/10.33258/birci.v5i2.5655

Article Metrics

Abstract view : 28 times
PDF - 9 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.