Prediction of Student Graduation Using Naïve Bayes

Robi Sepriansyah, Susan Dian Purnamasari

Abstract


The quality of universities, especially study programs in Indonesia is measured based on an accreditation assessment from the National Accreditation Board for Higher Education (BAN-PT). The quality assessment is measured based on 7 main standards, one of which is students and graduation. Every university must have academic data and biodata of each student based on the initial registration until graduation. Students who are accepted or who enter college are increasing every year, but not all students are able to graduate on time.algorithm Naïve Bayes used study aims to predict student graduation through student academic performance data in semester one to semester four, attributes Nim, Credit and GPA using the Discovery In Database (KDD) This Knowledge model data Testing on the Rapid Miner application.From the results of the tests that have been carried out, it can be concluded that the accuracy value of the prediction results is 95.33%, the results are quite accurate for the data used by testing the testing as many as 120, namely passing in semester 8 as many as 78, passing in semester 9 as many as 24, while 3 who graduated in semester 10, and students who graduated in semester 12 were 15.


Keywords


prediction; classification; naive bayes; rapid miner

Full Text:

PDF

References


Alim, S. (2021).” Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes Orange Data Mining Implementation For Student Graduation Classification Using K-Nearest Neighbor, Decision Tree And Naive Bayes Models" 6, 12.

Anugrah Putra, D., Kamayani, M., (2020). Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Naive Bayes di Program Studi Teknik Informatika UHAMKA. Prosid Sem Nas Teknoka 5, 34–40. https://doi.org/10.22236/teknoka.v5i.331

Anwar, F.F., Jaya, A.I., Abu, M., (2022). Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Decision Tree dengan Penerapan Algoritma C4.5. JIMT 19, 19–28. https://doi.org/10.22487/2540766X.2022.v19.i1.15880

Banjarsari, M.A., Budiman, H.I., Farmadi, A., (2015). Penerapan K-Optimal Pada Algoritma Knn untuk Prediksi Kelulusan Tepat Waktu Mahasiswa Program Studi Ilmu Komputer Fmipa Unlam Berdasarkan IP Sampai Dengan Semester 4 02, 15.

Fadillah, A.P., (2015). Penerapan Metode CRISP-DM untuk Prediksi Kelulusan Studi Mahasiswa Menempuh Mata Kuliah (Studi Kasus Universitas XYZ). JuTISI 1. https://doi.org/10.28932/jutisi.v1i3.406

Hananto, V.R., n.d. Analisis Penentuan Metode Data Mining Untuk Prediksi Kelulusan Mahasiswa Sebagai Penunjang Angka Efisiensi Edukasi 11.

Hendra, H., Azis, M.A., Suhardjono, S., (2020). Analisis Prediksi Kelulusan Mahasiswa Menggunakan Decission Tree Berbasis Particle Swarm Optimization. SISFOKOM 9, 102–107. https://doi.org/10.32736/sisfokom.v9i1.756

Larasati, I.D., Supianto, A.A., Furqon, M.T., n.d. Prediksi Kelulusan Mahasiswa Berdasarkan Kinerja Akademik Menggunakan Metode Modified K-Nearest Neighbor (MK-NN) 6.

Malelak, K.H.L., Ardiada, I.M.D., Feoh, G., (2021). Implementasi Klasifikasi Naive Bayes Dalam Memprediksi Lama Studi Mahasiswa (Studi Kasus : Universitas Dhyana Pura). Sintech Journal 4, 202–209. https://doi.org/10.31598/sintechjournal.v4i2.964.

Maulana, D., Nurjanah, E.L., (2019). Analisa Tingkat Kepuasan Pelanggan Terhadap Penjualan Beauty Produk Pada Online Shop Dengan Menggunakan Metode Naive Bayes 10, 8.

Murtopo, A.A., (2016). Prediksi Kelulusan Tepat Waktu Mahasiswa STMIK YMI Tegal Menggunakan Algoritma Naïve Bayes. CSRID Journal 7, 145. https://doi.org/10.22303/csrid.7.3.2015.145-154

Nasution, N., Djahara, K., Zamsuri, A., n.d. Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naïve Bayes (Studi Kasus: Fasilkom Unilak) 11 [11] A. Moenir and F. Yuliyanto, “Perancangan Sistem Informasi Penggajian Berbasis Web dengan Metode Waterfall pada PT. Sinar Metrindo Perkasa (Simetri),” J. Inform. Univ. Pamulang, vol. 2, no. 3, pp. 127–137, 2017.

Pambudi, R.D., Supianto, A.A., Setiawan, N.Y., n.d. Prediksi Kelulusan Mahasiswa Berdasarkan Kinerja Akademik Menggunakan Pendekatan Data Mining Pada Program Studi Sistem Informasi Fakultas Ilmu Komputer Universitas Brawijaya 7.

Prasetyo, V.R., Lazuardi, H., Mulyono, A.A., Lauw, C., (2021). Penerapan Aplikasi RapidMiner Untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar Dengan Metode Linear Regression. TEKNOSI 7, 8–17. https://doi.org/10.25077/TEKNOSI.v7i1.2021.8-17

Rohmawan, E.P., n.d. Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Desicion Tree Dan Artificial Neural Network 10

Romadhona, A., Himawan, H., (2017). Prediksi Kelulusan Mahasiswa Tepat Waktu Berdasarkan Usia, Jenis Kelamin, Dan Indeks Prestasi Menggunakan Algoritma Decision Tree 13, 15.

Rudy Hendrawan, I.N., Budhi Saputra, I.M.A., Cahya Dewi, G.A.P., Adi Pranata, I.G.S., Wedasari, N.L.N., (2022). Klasifikasi Lama Studi dan Predikat Kelulusan Mahasiswa menggunakan Metode Naïve Bayes. eksplora 11, 50–56. https://doi.org/10.30864/eksplora.v11i1.606

Sabilla, W.I., Putri, T.E., n.d. Prediksi Ketepatan Waktu Lulus Mahasiswa dengan k- Nearest Neighbor dan Naïve Bayes Classifier (Studi Kasus Prodi D3 Sistem Informasi Universitas Airlangga) 8.

Sardi, H.Y., Budayawan, K., (2020). Klasifikasi Tingkat Kelulusan Mahasiswa Elektronika Menggunakan Algoritma Naïve Bayes Classifier 8, 5.

Shah, M. et al. (2020). The Development Impact of PT. Medco E & P Malaka on Economic Aspects in East Aceh Regency. Budapest International Research and Critics Institute-Journal (BIRCI-Journal). P. 276-286.




DOI: https://doi.org/10.33258/birci.v5i3.6447

Article Metrics

Abstract view : 35 times
PDF - 57 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.