Digital Authentication Usage Behavior of Indonesian Civil Servant Pensioners

Zul Akbar Yulianto, Linda Asriani, Ardian Syaputra, Julbintor Kembaren

Abstract


In improving service and payment accuracy for Civil Servant pensioners in Indonesia, pensioners can already use a validation tool in digital authentication through facial biometric data using smartphone applications in 2019. This authentication activity is something that pensioners must do before getting their monthly pension to ensure they are still alive and entitled to retirement. With the development of this digital service, pensioners can conveniently fulfil their obligations. However, to ensure pensioners can adapt to technological changes, these services are essential in ensuring the success of the service digitization program. It is because, demographically, there are still many pensioners belonging to the Baby Boomer and X generation categories. This study was conducted to determine the factors that influence the Behavior Intention and Digital Authentication Usage Behavior in pensioners, using TAM 3 theories moderated by technology experience factors from pensioners. Meanwhile, few studies discuss technology experience as a moderator in knowing these two variables. As a result, there was a positive and significant effect of Perceived Usefulness (PU), Perceived Ease of Use (PEOU), and Perceived Enjoyment (PE) on Behavioral Intention (BI) using Digital Authentication Applications. Furthermore, Behavioral Intention (BI) positively and significantly influenced the Usage Behavior (UB) of this Digital Authentication. Meanwhile, Experience did not moderate the positive effect of perceived enjoyment on behavior intention of the TASPEN Otentikasi Application.


Keywords


biometric; authentication; pensioner; TAM; behavior

Full Text:

PDF

References


Adriana, T.D., Dan, L.T., Melinda, T.F., Sorinel, C., & Umair, A. (2021). Impact of Digitalization on Customers’ Well-Being in the Pandemic Period: Challenges and Opportunities for the Retail Industry. Environmental Research and Public Health. https://doi.org/10.3390/ijerph18147533

Agniezka, P., Annalena, K.B., Dominik, B., Günter, W.M., & Lisa, M. (2020). How to raise technology acceptance: user experience characteristics as technology-inherent determinants. Department of Psychology, Bielefeld University, Bielefeld, Germany. https://doi.org/10.1007/s11612-020-00529-7

Akram, U., Fülöp, M.T , Tiron-Tudor, A., Topor, D.I., & Căpusneanu, S. (2021). Impact of Digitalization on Customers’ Well- Being in the Pandemic Period: Challenges and Opportunities for the Retail Industry. MDPI Int. J. Environ. Res. Public Health 18, 7533. https://doi.org/10.3390/ijerph18147533.

Al-zawei, A. (2019). What Drives Successful Social Media in Education and E-learning? A Comparative Study on Facebook and Moodle. Journal of Information Technology Education. University Of Babylon. DOI: 10.28945/4360. https://www.researchgate.net/publication/333677705

Amin, H., Supinah, R., Aris, M.M., & Baba, R. (2012). Receptiveness of mobile banking by Malaysian local customers in Sabah: An empirical investigation. J. Internet Bank. Commer., 17, 1–13.

Ardiansah, M. N., Chariri, A., Rahardja, S., & Udin, U. (2020). The effect of electronic payments security on e-commerce consumer perception: An extended model of technology acceptance. Management Science Letters, 10(7), 1473-1480. doi: 10.5267/j.msl.2019.12.020

Chen, Y.H., & Barnes, S. (2007). Initial trust and online buyer behaviour. Ind. Manage. Data Syst. 107 (1), 21- 36. Consult, A.N. (2002). China Online Banking Study. http://estore.chinaonline.com/chinonlbanstu.html

Czaja, S.J., Charness, N., Fisk, A.D., Hertzog, C., Nair, S.N., Rogers, W.A. & Sharit, J. (2006). Factors predicting the use of technology: Findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE). Psychol Aging. 21(2): 333- 352.

Davis, F.D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Doctoral dissertation, Cambridge, MA: Massachusetts Institute of Technology.

Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3): 319- 339.

Davis, F. D. (1993). User acceptance of information technology: system characteristics, user perceptions and behavioral impacts.

International journal of man-machine studies, Vol. 38, No. 3, pp. 475-487.

Elshafey, A., Saar, C.C., Aminudin, E., Gheisari,M., & Usmani, A. (2020). Technology acceptance model for Augmented Reality and Building Information Modeling integration in the construction industry. Journal of Information Technology in Construction (ITcon), Vol. 25, pg. 161-172. DOI: 10.36680/j.itcon.2020.010.

Gahtani, S.A. (2001). The applicability of TAM outside North America: an empirical test in the United Kingdom. Info. Resour.

Manage. J. 2 (July- September), pp. 37-46.

Garson, G.D. (2016). Partial Least Squares: Regresision & Structural Equation Models. Statistical Publishing Associates. ISBN- 10: 1626380392 ISBN-13: 978-1-62638-039-4.

Gefen, D., Straub, D. (2000). The relative importance of perceived ease of use in IS adoption: a study of e-commerce adoption.

Ghozali, I., & Latan, H. (2015). Partial Least Squares Konsep, Teknik dan Aplikasi Menggunakan Program SmartPLS 3.0. (2). Badan Penerbit Universitas Diponegoro, Semarang.

J. Assoc. Info. Syst. 1(8): 1-28.

Giatsidis, I., Kitsios, F. & Kamariotou, M. (2019). Digital Transformation and User Acceptance of Information Technology in the Banking Industry. Proceedings of the 8th International Symposium & 30th National Conference on Operational Research, Patras, Greece, pp. 6-10. http://eeee2019.teiwest.gr/docs/HELORS_2019_proceedings.pdf

Guriting, P., & Ndubisi, N.O. (2006). Borneo online banking: evaluating customer perceptions and behavioural intention.

Manage. Res. News. 29 (1/2), 6-15.

Goodman-Deane, J., Bradley, M., & Clarkson, P.J. (2020). Digital technology competence and experience in the UK population: who can do what. https://www.semanticscholar.org/paper/Digital-technology-competence-and-experience-in-the- Goodman-Deane-Bradley/46106761f4ee257d8267e146cdc76f8c4861a6d2

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Thousand Oaks, CA: Sage Publications. https://doi.org/10.15358/9783800653614

Hartley, K., & Bendixen, L. D. (2001). Educational research in the Internet age: Examining the role of individual characteristics.

Educational Researcher, 30(9), 22–26. https://doi.org/10.3102/0013189X030009022

Hernandez, J.M.C., Mazzon, J.A. (2007). Adoption of internet banking: proposition and implementation of an integrated methodology approach. International J. Bank Mark. 25 (2): 72-88.

Jahangir, N. & Begum, N. (2008). The role of perceived usefulness, perceived ease of use, security and privacy, and customer attitude to engender customer adaptation in the context of electronic banking. African Journal of Business Management Vol.2 (1), pp. 032-040. http://www.academicjournals.org/AJBM

Kitsios, F., Giatsidis, I., & Kamariotou, M. (2021). Digital Transformation and Strategy in the Banking Sector: Evaluating the Acceptance Rate of E-Services. Journal of Open Innovation: Technology, Market, and Complexity, 7(3), 204. MDPI AG. https://www.mdpi.com/2199-8531/7/3/204.

Kock, N., & Lynn, G.S. (2012). Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. Journal of the Association for Information Systems, 13(7), 546-580.

Lindsay, R., Jackson, T. W., & Cooke, L. (2011). Adapted technology acceptance model for mobile policing. Journal of Systems and Information Technology, 13(4), 389-407. https://doi.org/10.1108/13287261111183988

Liu, I. F., Chen, M. C., Sun, Y. S., Wible, D., & Kuo, C. H. (2010). Extending the TAM model to explore the factors that affect Intention to Use an Online Learning Community. Computers and Education, 54(2), 600 – 610. https://doi.org/10.1016/j.compedu.2009.09.009.

Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Inf. Manag., 40, 191–204.

Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Info. Syst. Res. 2(3): 173-191.

Mlekus, L., Bentler, D., Paruzel, A., Beiderwieden, A.L.K., & Maier, G.W. (2020). How to raise technology acceptance: user experience characteristics as technology-inherent determinants. Department of Psychology, Bielefeld University, Germany, Gr Interakt Org 51:273–283. https://doi.org/10.1007/s11612-020-00529-7.

Morales, D.T., & Trinidad, F.L. (2019). Digitization of Mortgage Banking among Selected Universal Banks in the Philippines: Towards a Model of Acceptance of Digital Mortgage Service. Review of Integrative Business and Economics Research, Vol. 8, Supplementary Issue. http://buscompress.com/uploads/3/4/9/8/34980536/riber_8-s4_32_k19-132_401-411.pdf

Morales, D.T., & Trinidad, F.L. (2019). Unified Theory Of Acceptance Use Of Technology (UTAUT) And Its Applicability To Mortgage Banking Digitization: The Case Of The Philippines. Journal of Information System and Technology Management, Vol. 4, Supplementary Issue 14. www.jistm.com

Munoz-Leiva, F., Climent-Climent, S., & Liébana-Cabanillas, F. (2017). Determinants of intention to use the mobile banking apps: An extension of the classic TAM model. Span. J. Mark.-ESIC 2017, 21, 25–38.

Niraula, P. & Kautish, S. (2019). Study of The Digital Transformation Adoption in The Insurance Sector of Nepal. LBEF Research Journal of Science, Technology and Management Volume 1, Issue 1 ISSN: 2705- 4683.

Ogbo, E., Brown, T., Gant, J., & Sicker, D. (2021). An Analysis of the Second and Third Levels of the Digital Divide in a Developing Country. Journal of Information Policy , 2021, Vol. 11 (2021), pp. 104-146. Penn State University. http://www.jstor.org/stable/10.5325/jinfopoli.11.2021.0104

Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., & Pahnila, S. (2004). Consumer acceptance of online banking: An extension of the technology acceptance model. Internet Res. 2004, 14, 224–235.

Peraturan Direktur Jenderal Perbendaharaan Nomor 19. (2015). Tata Cara Pencairan Dan Pertanggungjawaban Dana Belanja Pensiun Yang Dilaksanakan Oleh PT Taspen (Persero) Dan PT Asabri (Persero). Kementerian Keuangan Republik Indonesia. Jakarta.

Peraturan Direktur Jenderal Perbendaharaan Nomor 44. (2018). Perubahan Kedua Atas Peraturan Direktur Jenderal Perbendaharaan Nomor Per-19/PB/2015 Tentang Tata Cara Pencairan dan Pertanggungjawaban Sana Belanja Pensiun Yang Dilaksanakan Oleh PT Taspen (Persero) Dan PT Asabri (Persero). Kementerian Keuangan Republik Indonesia. Jakarta.

Peraturan Menteri Keuangan Republik Indonesia Nomor 82. (2015). Tata Cara Perhitungan, Penyediaan, Pencairan, Dan Pertanggungjawaban Dana Belanja Pensiun Yang Dilaksanakan Oleh PT Taspen (Persero) dan PT Asabri (Persero). Menteri Keuangan Republik Indonesia. Jakarta.

Räckers, M., Hofmann, S., & Becker, J. (2013). The Influence of Social Context and Targeted Communication on e-Government Service Adoption. Lecture Notes in Computer Science, 8074, 8074. doi:10.1007/978- 3-642- 40358-3_25.

Rogers, E.M. (1962). Diffusion of Innovations. Free Press 1st ed, New York, NY. Rogers, E.M. (1983) Diffusion of Innovations.

The Free Press 4th, New York, NY.

Saeroji, A., Maskur, A. & Tjahjaningsih, E. (2015). Niat Pengaruh Norma Subjektif dan Kontrol Perilaku yang Dipersepsikan Terhadap Niat Pinjam KUR Mikro. Prosiding Seminar Nasional Multi Disiplin Ilmu & Call For Papers UNISBANK (Sendi_U). ISBN: 978-979-3649-81-8. https://www.unisbank.ac.id/ojs/index.php/fe10/article/view/4550/0

Sekaran, U. & Bougie, R. (2016). Research Methods For Business – A Skill Building Approach 7th Edition. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, United Kingdom.

Sepaszozar, F.M.E., Ramzani, U., Ebrahimzadeh, S., Sargolzae, S., & Sepasgozarm, S. (2020). Technology Acceptance in e- Governance: A Case of a Finance Organization. Journal of risk and Financial Management. MDPI. doi:10.3390/jrfm13070138.

Shen, C.C., & Chuang, H.M. (2010). Exploring Users’ Attitudes and Intentions toward the Interactive Whiteboard Technology Environment. International Review on Computers and Software, 5(2), 200– 209.

Shih, P. C., Muñoz, D., & Sánchez, F. (2006). The effect of previous experience with information and communication technologies on performance in a web-based learning program. Computers in Human Behavior, 22(6), 962–970. https://doi.org/10.1016/j.chb.2004.03.016.

Song, L., Singleton, E. S., Hill, J. R., & Koh, M. H. (2004). Improving online learning: Student perceptions of useful and challenging characteristics. Internet and Higher Education, 7(1), 59–70. https://doi.org/10.1016/j.iheduc.2003.11.003

Suhaimi, A.I.H., & bin Abu Hassan, M.S. (2019). Determinants of Branchless Digital Banking Acceptance Among Generation Y in Malaysia. In Proceedings of IEEE Conference on E-Learning, e-Management and e-Services (IC3e), Langkawi, Malaysia.

Tahar, A., Riyadh, H.A., Sofyani, H., & Purnomo, W.E. (2020). Perceived Ease of Use, Perceived Usefulness, Perceived Security and Intention to Use E-Filing: The Role of Technology Readiness. Journal of Asian Finance, Economics and Business Vol 7 No 9 (2020) 537–547.

Undang-Undang Republik Indonesia Nomor 11. (1969). Pensiun Pegawai dan Pensiun Janda/Duda Pegawai. Presiden Republik Indonesia. Jakarta.

Venkatesh, V. (2000). Veterminants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model. Info. Syst. Res. 4(4): 342-365.

Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273–315. https://doi.org/10.1111/j.1540-5915.2008.00192.x

Venkatesh, V., & Davis, F.D. (1996). A model of the antecedents of perceived ease of use:development and test. Decis. Sci. 27(3), 451- 481.




DOI: https://doi.org/10.33258/birci.v5i4.7196

Article Metrics

Abstract view : 60 times
PDF - 18 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.