Analysis of Naïve Bayes Algorithm Method for Outstanding Students at Yapendak Ajamu Private Junior High School

Putri Erwina, Ibnu Rasyid Munthe, Rahma Muti’ah

Abstract


Academic achievement is a change in skills or abilities that can be enhanced through learning situations. However, an issue arises at Yapendak Ajamu Private Junior High School, where student assessments are still manually inputted, resulting in inefficiency when transferring grades to paper, which are later re-entered into the e-Report system. The calculation of student scores is also done manually, and the criteria for determining outstanding students heavily rely on academic grades, while non-academic aspects are only considered as supporting data with unclear weighting. Consequently, the assessment lacks fairness in determining outstanding students. Moreover, the manual nature of the assessment and the fact that it is held solely by the homeroom teachers make it difficult to access. The Naïve Bayes algorithm method applies a classification system that includes academic grades, attitudes, attendance, and extracurricular activities. School is a place where students weigh knowledge for future needs, each school also has its own permissibility, both in terms of the best student creator school and a school that only has a few smart students, but it can be ascertained that every school wants all its students to have high intelligence, but intelligence is also not only created by the school but intelligence is also based on the students, Yapendak Ajamu Private Junior High School is a private school that has smart students Where this make Yapendak Ajamu Private Junior High School known  to many people. These factors can be utilized by the school to determine outstanding students. Out of the 34 data training sessions processed in the Orange application, 30 students were predicted to be outstanding, while the remaining students were classified as not outstanding. The precision for predicting outstanding students is 1.000, while for predicting non-outstanding students, it is 0.104. Therefore, the conclusion drawn is that the grades of outstanding students are higher compared to those of non-outstanding students.


Keywords


Academic; achievement; clsssification; junior high school; naïve bayes

Full Text:

PDF

References


A. F. Watratan, A. P. B, D. Moeis, S. Informasi, and S. P. Makassar, “Implementation of the Naive Bayes Algorithm to Predict the Spread of Covid-19 in Indonesia,” J. Appl. Comput. Sci. Technol., vol. 1, no. 1, pp. 7–14, 2020.

A. K. Clustering and G. Belajar, “Aplikasi Data Mining Menggunakan Algoritma K-Means Clustering untuk Mengelompokkan Mahasiswa Berdasarkan Gaya Belajar,” vol. 12, 2022, doi: 10.34010/jati.v12i1.

B. A. B. Ii and S. Sebelumnya, “BAB II TINJAUAN PUSTAKA 2.1 Studi Sebelumnya,” pp. 7–20, 2019.

B. Siregar, F. A. Pangruruk, S. T. Siridion, and U. Matana, “Pengenalan Data Science dan Profesi Data Scientist di SMA Pramita Tangerang,” vol. 1, no. 2, pp. 87–96, 2022.

D. Yunita, R. Amalia, and P. Rosyani, “Analisa Prestasi Siswa Berdasarkan Kedisiplinan , Nilai Hasil Belajar , Sosial Ekonomi dan Aktivitas Organisasi Menggunakan Algoritma Naïve Bayes,” vol. 3, no. 4, pp. 2–5, 2018.

E. W. Ambarsari, “Pemodelan Reward Rule Game Streamer Indonesia Tingkat Amatir dengan Orange Data Mining,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 4, no. 1, p. 9, 2019, doi: 10.30998/string.v4i1.3606.

H. D. Wijaya and S. Dwiasnati, “Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat,” vol. 7, no. 1, pp. 1–7, 2020.

H. Hozairi, A. Anwari, and S. Alim, “Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes,” Netw. Eng. Res. Oper., vol. 6, no. 2, p. 133, 2021, doi: 10.21107/nero.v6i2.237.

H. Putri, A. I. Purnamasari, A. R. Dikananda, O. Nurdiawan, and S. Anwar, “Penerima Manfaat Bantuan Non Tunai Kartu Keluarga Sejahtera Menggunakan Metode NAÏVE BAYES dan KNN,” vol. 3, no. 3, pp. 331–337, 2021, doi: 10.47065/bits.v3i3.1093.

I. A. Nikmatun, U. Diponegoro, I. Waspada, and U. Diponegoro, “IMPLEMENTASI DATA MINING UNTUK KLASIFIKASI MASA STUDI MAHASISWA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR,” vol. 10, no. 2, pp. 421–432, 2019.

I. Technology and C. Science, “No Title,” vol. 4, pp. 20–29, 2021.

J. Informasi, S. Oktarian, and S. Defit, “Klasterisasi Penentuan Minat Siswa dalam Pemilihan Sekolah Menggunakan Metode Algoritma K-Means Clustering,” vol. 2, 2020, doi: 10.37034/jidt.v2i3.65.

J. Prima, J. Sistem, I. Komputer, and V. No, “PENERAPAN METODE NAÏVE BAYES DALAM MEMPREDIKSI PRESTASI SISWA DI SMA NEGERI 1 PANOMBEIAN PANEI,” vol. 4, no. 2, 2021. “ENENG SHERLIN AGUSTIN_Si20”.

M. Berprestasi, “IMPLEMENTASI NAIVE BAYES UNTUK SISTEM PREDIKSI,” vol. 8, no. 2, 2022.

M. I. A. PRAMUDYA, “Penerapan Market Basket Analysis Menggunakan Proses Knowledge Discovery in Database (Kdd) Sebagai Strategi Penjualan …,” Repository.Radenintan.Ac.Id, 2022, [Online]. Available: http://repository.radenintan.ac.id/id/eprint/21682%0Ahttp://repository.radenintan.ac.id/21682/1/SKRIPSI 1-2.pdf

M. K. M. Nasution, “Sains Data,” no. March, 2020, doi: 10.13140/RG.2.2.21816.49924/2.

N. Yustira, D. Witarsyah, and E. Sutoyo, “IMPLEMENTASI ALGORITMA NAÏVE BAYES CLASSIFICATION UNTUK KLASIFIKASI KELULUSAN MAHASISWA TEPAT WAKTU ( STUDI KASUS : PROGRAM STUDI SISTEM INFORMASI UNIVERSITAS TELKOM )”.

P. Studi, T. Informatika, and U. Mulawarman, “KNN vs Naive Bayes Untuk Deteksi Dini Putus Kuliah Pada Profil Akademik Mahasiswa,” vol. 3, no. 2, 2019.

R. F. Rohman, P. Studi, T. Informatika, and F. Teknik, “KRITERIA KETUNTASAN MINIMAL SISWA MENGGUNAKAN METODE NAÏVE BAYES,” 2020.

R. Sistem, “Klasifikasi Berita Menggunakan Algoritma Naive Bayes Classifer Dengan,” vol. 1, no. 10, pp. 3–8, 2021.

R. Wirawan, P. S. Informatika, F. Komunikasi, D. A. N. Informatika, and U. M. Surakarta, “Analisa terhadap tingkat keaktifan siswa pada kegiatan pembelajaran sekolah dengan metode naïve bayes,” 2022.

R. Y. Hayuningtyas, “Penerapan Algoritma Naïve Bayes untuk Rekomendasi Pakaian Wanita,” J. Inform., vol. 6, no. 1, pp. 18–22, 2019, doi: 10.31311/ji.v6i1.4685.

S. Indah Nurhafida and F. Sembiring, “Analisis Text Clustering Masyarakat Di Twiter Mengenai Mcdonald’Sxbts Menggunakan Orange Data Mining,” SISMATIK (Seminar Nas. Sist. Inf. dan Manaj. Inform., pp. 28–35, 2021.

S. M. Gaib et al., “Analisis Efektivitas Pembelajaran Daring Google Classroom Menggunakan Metode Naïve Bayes,” vol. 5, no. 2, pp. 36–40, 2021.

Y. Astuti, I. R. Wulandari, I. Sulistyowati, B. A. M, F. Sains, and U. K. Immanuel, “Algoritma Naive Bayes untuk Mengklasifikasikan Kepribadian Siswa SMP Berdasarkan Tipologi,” vol. 10, pp. 480–489, 2021.




DOI: https://doi.org/10.33258/birci.v6i3.7704

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.