Vortex Beam Ionization: A Novel Approach to Advanced Communication Systems

Belay Sitotaw Goshu

Abstract


The purpose of this study is to examine the vortex beams' interaction with ionized media this work centers on the kinetics of the beam's propagation and its ionization efficiency. The spatial distribution of the intensity of the vortex beam propagating through plasma, paying special attention to the energy transfer and beam waist evolution processes. It was discovered that the ionization rate was roughly 1.0 ×10-6, indicating a low ionization efficiency at the specified energy levels. Furthermore, to understand the mechanisms governing the interaction between the vortex beam and the plasma break, down the electromagnetic fields into external and induced components. The findings suggest that optimizing the beam's parameters, such as intensity and polarization, can enhance ionization efficiency and improve applications in plasma-assisted communication and advanced particle manipulation. Furthermore, understanding how the medium's properties affect vortex beam propagation is crucial for developing more efficient systems. The study highlights the importance of considering plasma characteristics when applying vortex beams to practical problems and offers recommendations for improving ionization efficiency and beam stability in ionized environments.


Keywords


Vortex beams; Ionized media; Plasma propagation; Ionization efficiency; Electromagnetic fields

Full Text:

PDF

References


Agrawal, G. P. (2012). Fiber-optic communication systems (4th ed.). John Wiley & Sons.

Allen, L., Beijersbergen, M. W., Spreeuw, R. J., & Woerdman, J. P. (1992). Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 45(11), 8185–8189.

Allen, L., Beijersbergen, M. W., Spreeuw, R. J., & Woerdman, J. P. (1999). Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 45(11), 8185-8189.

Andrews, D. L. & Babiker, M. (2012). The angular momentum of light. Cambridge University Press.

Andrews, D. L., & Phillips, W. R. (2005). Laser beams and optics. SPIE Press.

Bekshaev, A. Y., Bliokh, K. Y., & Soskin, M. S. (2008). Internal flows in light beams and the manifestation of the spin-orbit interaction of photons. Journal of Optics A: Pure and Applied Optics, 11(9), 094007. https://doi.org/10.1088/1464-4258/11/9/094007

Bellan, P. M. (2006). Fundamentals of plasma physics. Cambridge University Press.

Chen, F. F. (2016). Introduction to plasma physics and controlled fusion (3rd ed.). Springer.

Keldysh, L. V. (1965). Ionization in the field of a strong electromagnetic wave. Soviet Physics JETP, 20(5), 1307–1314.

Lavery, M. P., Barnett, S. M., Speirits, F. C., & Padgett, M. J. (2017). Detection of a spinning object using light’s orbital angular momentum. Science Advances, 3(4), e1700007. https://doi.org/10.1126/sciadv.1700007

Leach, J., Courtial, J., Skeldon, K., Barnett, S. M., Franke-Arnold, S., & Padgett, M. J. (2004). Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. Physical Review Letters, 92(1), 013601.

Li, L., Li, Z., Zhao, R., Liu, H., Xu, S., & Fang, L. (2019). Orbital angular momentum-based wireless communications: challenges and opportunities. IEEE Communications Surveys & Tutorials, 21(2), 1293–1313. https://doi.org/10.1109/COMST.2018.2873086

McDonald, G. S., Hnatovsky, C., & Dubietis, A. (2000). Vortex beam propagation in Kerr and plasma nonlinearities. Journal of the Optical Society of America B, 17(4), 524–533. https://doi.org/10.1364/JOSAB.17.000524

Molina-Terriza, G., Torres, J. P., & Torner, L. (2007). Twisted photons. Nature Physics, 3(5), 305-310. https://doi.org/10.1038/nphys607

Padgett, M. J. & Bowman, R. (2011). Tweezers with a twist. Nature Photonics, 5(6), 343-348.

Padgett, M., Courtial, J., & Allen, L. (1999). Light’s orbital angular momentum. Physics Today, 52(5), 35–40.

Torres, J. P. & Torner, L. (2011). Twisted Photons: Applications of Light with Orbital Angular Momentum. Wiley-VCH. https://doi.org/10.1002/9783527635313

Varin, C., Piché, M., & Rioux, C. (2002). Generation and focusing of intense few-cycle optical vortex pulses. Journal of Optics A: Pure and Applied Optics, 4(5), S205–S209. https://doi.org/10.1088/1464-4258/4/5/379

Willner, A. E., Huang, H., Yan, Y., Ren, Y., Ahmed, N., Xie, G., & Tur, M. (2015). Optical communications using orbital angular momentum beams. Advances in Optics and Photonics, 7(1), 66–106. https://doi.org/10.1364/AOP.7.000066

Yao, A. M., & Padgett, M. J. (2011). Orbital angular momentum: origins, behavior, and applications. Advances in Optics and Photonics, 3(2), 161–204.

Zhao, J., Liu, X., Li, X., Huang, H., & Zhang, T. (2016). Generation of helical plasma channels with vortex beams for communication applications. Journal of Applied Physics, 120(10), 103101. https://doi.org/10.1063/1.4962745




DOI: https://doi.org/10.33258/birci.v7i4.7996

Article Metrics

Abstract view : 0 times
PDF - 3 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.