Implementation of Data Mining Technique for Performance of WFH and WFO Agents Using the K-Means Method Case Study Study of PT. Infomedia Telkom Consumer Profiling Services
Abstract
Outbound Call Center PT. Infomedia, consumer profiling service PT. Telkom during the pandemic period divided its agents into 80% WFH agents (Work at Home) and 20% agents WFO (Work from Office). For the division of the working mechanism, it is necessary to measure its performance. In the discussion of this paper, we will discuss the measurement with the application of data mining using the K-Means method, so it is hoped that it will provide an overview, how the cluster of each WFH or WFO agent in terms of performance. The results of this discussion indicate that there is a significant difference between the performance of WFH and WFO Agents.
Keywords
Full Text:
PDFReferences
F. Gullo, “From patterns in data to knowledge discovery: What data mining can do,” Phys. Procedia, vol. 62, pp. 18–22, 2015, doi: 10.1016/j.phpro.2015.02.005.
Alfiqra and F. Y. Alfizi, “Penerapan Market Basket Analysis Menggunakan Proses Kdd (Knowledge Discovery In Database) Sebagai Strategi Penjualan Produk Swalayan (Studi Kasus : Swalayan X) Alfiqra,” pp. 509–516, 2018.
J. Eska, “Penerapan Data Mining Untuk Prediksi Penjualan Wallpaper Menggunakan Algoritma C4.5,” vol. 2, 2018, doi: 10.31227/osf.io/x6svc.
L. Mushunje, “Fraud Detection and Fraudulent Risks Management in the Insurance Sector Using Selected Data Mining Tools,” Am. J. Data Min. Knowl. Discov., vol. 4, no. 2, p. 70, 2019, doi: 10.11648/j.ajdmkd.20190402.13.
Agus Nur Khormarudin, “Teknik Data Mining: Algoritma K-Means Clustering,” J. Ilmu Komput., pp. 1–12, 2016, [Online]. Available: https://ilmukomputer.org/category/datamining/.
S. Agarwal, Data mining: Data mining concepts and techniques. 2014.
L. Muflikhah, D. Ratnawati, and R. Putri, “Data Mining - Lailil Muflikhah, Dian Eka Ratnawati, Rekyan Regasari MP - Google Buku.” p. 128, 2018, [Online]. Available: https://books.google.co.id/books?id=V_NqDwAAQBAJ&printsec=frontcover&dq=data+mining&hl=id&sa=X&ved=0ahUKEwi6jIWMzJbiAhVCcq0KHYVKD-QQ6AEIMDAB#v=onepage&q=data mining&f=false.
M. S. Mustafa, M. R. Ramadhan, and A. P. Thenata, “Implementasi Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,” Creat. Inf. Technol. J., vol. 4, no. 2, p. 151, 2018, doi: 10.24076/citec.2017v4i2.106.
K. dan P. A. J. Dina Sunia, “Penerapan Data Mining untuk Clustering Data Penduduk Miskin Menggunakan Algoritma K-Means,” J. Ilm. Mhs. Tek. Inform., vol. Vol 1 No 2, no. 2016, pp. 121–134, 2019.
F. I. Sri Rahayu, Dodon T. Nugrahadi, “Clustering Penentuan Potensi Kejahatan Daerah Di Kota Banjarbaru Dengan Metode K-Means,” Kumpul. J. Ilmu Komput., vol. 01, no. 01, pp. 33–45, 2014.
A. Maulana and A. A. Fajrin, “Penerapan Data Mining Untuk Analisis Pola Pembelian Konsumen Dengan Algoritma Fp-Growth Pada Data Transaksi Penjualan Spare Part Motor,” Klik - Kumpul. J. Ilmu Komput., vol. 5, no. 1, p. 27, 2018, doi: 10.20527/klik.v5i1.100.
A. V. D. Sano and H. Nindito, “Application of K-Means Algorithm for Cluster Analysis on Poverty of Provinces in Indonesia,” ComTech Comput. Math. Eng. Appl., vol. 7, no. 2, p. 141, 2016, doi: 10.21512/comtech.v7i2.2254.
Y. Darmi and A. Setiawan, “Penerapan metode clustering k-means dalam pengelompokan penjualan produk,” J. Media Infotama Univ. Muhammadiyah Bengkulu, vol. 12, no. 2, pp. 148–157, 2016.
S. S. Nagari and L. Inayati, “Implementation of Clustering Using K-Means Method To Determine Nutritional Status,” J. Biometrika dan Kependud., vol. 9, no. 1, p. 62, 2020, doi: 10.20473/jbk.v9i1.2020.62-68.
M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,” J. Nas. Teknol. dan Sist. Inf., vol. 5, no. 1, pp. 17–24, 2019, doi: 10.25077/teknosi.v5i1.2019.17-24.
DOI: https://doi.org/10.33258/birex.v3i2.1810
Article Metrics
Abstract view : 425 timesPDF - 194 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.