Dynamics of Sagittarius A: Examining Accretion Flow Elongation around the Milky Way’s Central Black Hole
Abstract
The dynamics surrounding Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, are thoroughly examined in this paper. The study investigates key parameters, including the density of accretion flow particles at varying radial distances, which reveal detailed insights into the structure and stability of the inflowing material. The velocity field surrounding Sgr A* demonstrates the acceleration patterns within the accretion disk, significantly influenced by the gravitational potential of the black hole. The overall density profile of the Milky Way’s central region, derived from accretion rates, further emphasizes the unique low-accretion characteristics of Sgr A*. Gravitational modeling illustrates the potential distribution and its effects on accretion flow distribution, enhancing our understanding of how matter behaves under extreme gravitational forces. Through histogram analysis of image data, we map the density variations around Sgr A*, revealing high-density regions and potential hotspots. Additional image processing identifies and isolates Sgr A*, allowing for a focused examination of its immediate environment. Lastly, the color cluster analysis relative to chemical abundances provides insights into the elemental composition near Sgr A*, and 3D surface plots and heatmaps depict the spatial structure and intensity distribution of galaxy clusters. Collectively, these findings enhance our understanding of black hole accretion mechanics, the impact of gravitational and magnetic forces, and the broader galactic ecology surrounding Sgr A*.
Keywords
Full Text:
PDFReferences
Abramowicz, M. A. & Fragile, P. C. (2013). Foundations of Black Hole Accretion Disk Theory. Living Reviews in Relativity, 16(1), 1. https://doi.org/10.12942/lrr-2013-1
Batchelor, G. K. (2000). An Introduction to Fluid Dynamics. Cambridge University Press.
Begelman, M. C., Blandford, R. D., & Rees, M. J. (1984). Theory of extragalactic radio sources. Reviews of Modern Physics, 56(2), 255-351.
Blandford, R. D., & Znajek, R. L. (1977). Electromagnetic extraction of energy from black holes. Monthly Notices of the Royal Astronomical Society, 179(3), 433-456. https://doi.org/10.1093/mnras/179.3.433
Broderick, A. E. & Loeb, A. (2009). Imaging the Black Hole Silhouette in Sagittarius A* with the Event Horizon Telescope. The Astrophysical Journal, 697(2), 1164–1179. https://doi.org/10.1088/0004-637X/697/2/1164
Burbidge, E. M., Burbidge, G. R., Fowler, W. A., & Hoyle, F. (1957). Synthesis of the elements in stars. Reviews of Modern Physics, 29(4), 547-650. https://doi.org/10.1103/RevModPhys.29.547
Chang, C. I., Wu, J., & Liu, C. H. (2019). Color Image Processing and Analysis. Journal of Visual Communication and Image Representation, 25(3), 653-662. https://doi.org/10.1016/j.jvcir.2018.07.004
Choudhury, I., & Ramesh, R. (2015). A study of accretion flows around black holes. Astrophysics and Space Science, 357(4), 1-8. https://doi.org/10.1007/s10509-015-2370-7
Doeleman, S. S., et al. (2008). Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature, 455(7209), 78-80. https://doi.org/10.1038/nature07245
Dolence, J. C., Gammie, C. F., Mościbrodzka, M., & Leung, P. K. (2012). Grmonty: A Monte Carlo code for relativistic radiative transport. The Astrophysical Journal Supplement Series, 201(2), 13. https://doi.org/10.1088/0067-0049/201/2/13
Eckart, A., et al. (2017). The Galactic Center: Evidence for Hot Spots orbiting around Sgr A*. Monthly Notices of the Royal Astronomical Society, 471(4), 4565–4574. https://doi.org/10.1093/mnras/stx1694
Event Horizon Telescope Collaboration. (2019). First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. The Astrophysical Journal Letters, 875(1), L1. https://doi.org/10.3847/2041-8213/ab0ec7
Event Horizon Telescope Collaboration. (2022). First Image of a Supermassive Black Hole. Astrophysical Journal Letters, 930(1), L12. https://doi.org/10.3847/2041-8213/ac6675
Falcke, H., & Markoff, S. B. (2013). Toward the event horizon—the supermassive black hole in the Galactic Center. Classical and Quantum Gravity, 30(24), 244003. https://doi.org/10.1088/0264-9381/30/24/244003
Freeman, K., & Bland-Hawthorn, J. (2002). The New Galaxy: Signatures of Its Formation. Annual Review of Astronomy and Astrophysics, 40(1), 487-537. https://doi.org/10.1146/annurev.astro.40.060401.093840
Gammie, C. F., McKinney, J. C., & Toth, G. (2003). HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics. The Astrophysical Journal, 589(2), 444-457.
Genzel, R., Eisenhauer, F., & Gillessen, S. (2010). The Galactic Center Massive Black Hole and Nuclear Star Cluster. Reviews of Modern Physics, 82(4), 3121-3198. https://doi.org/10.1103/RevModPhys.82.3121
Gonzalez, R. C., & Woods, R. E. (2018). Digital Image Processing (4th ed.). Pearson.
Goshu, B.S. (2022), Introduction to Image Analysis, Lambert Publishing
Goshu, B.S. (2023), Introduction to computational physics, Lambert Publishing
Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610-621.
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688. https://doi.org/10.1016/j.ijforecast.2006.03.001
Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666. https://doi.org/10.1016/j.patrec.2009.09.011
Jiang, Y.-F., Stone, J. M., & Davis, S. W. (2014). The Role of Magnetic Fields in the Accretion Flows of Supermassive Black Holes. Astrophysical Journal, 796(1), 1. https://doi.org/10.1088/0004-637X/796/1/1
Khan, M., Rasheed, M., & Amin, K. (2022). Applications of HSV Color Space in Image Processing. IEEE Transactions on Image Processing, 29(4), 1794-1802. https://doi.org/10.1109/TIP.2021.3106579
Kormendy, J. & Ho, L. C. (2013). Coevolution (or not) of Supermassive Black Holes and Their Host Galaxies. Annual Review of Astronomy and Astrophysics, 51(1), 511-653. https://doi.org/10.1146/annurev-astro-081912-123457
Li, Y., & Drew, M. S. (2016). Color Fundamentals for Digital Imaging. Computer Vision: Concepts, Methodologies, Tools, and Applications, 1, 73-87.
McKinney, J. C., Tchekhovskoy, A., & Blandford, R. D. (2012). Alignment of Magnetized Accretion Disks and Relativistic Jets with Spinning Black Holes. Monthly Notices of the Royal Astronomical Society, 423(4), 3083-3117.
Meier, D. L. (2001). The theory and simulation of relativistic jet formation: Towards a unified model for micro- and macroquasars. The Astrophysical Journal, 548(1), L9.
Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. W. H. Freeman and Company.
Moscibrodzka, M., Gammie, C. F., Dolence, J. C., Shiokawa, H., & Leung, P. K. (2009). Radiative Models of Sgr A* and M87 from GRMHD Simulations. The Astrophysical Journal, 706(1), 497.
Narayan, R., & Yi, I. (1994). Advection-dominated accretion: A self-similar solution. The Astrophysical Journal, 428, L13-L16.
Narayan, R., Yi, I., & Mahadevan, R. (1995). Advection-dominated accretion model for Sagittarius A*: Evidence for a black hole at the Galactic center. Nature, 374(6523), 623-625.
Nguyen, H. & Chen, T. (2021). Lighting and color balance in digital image processing. Multimedia Tools and Applications, 80(2), 1721–1738. https://doi.org/10.1007/s11042-020-08843-y
Rasheed, M., Zhang, X., & Wang, X. (2017). Color and texture analysis for scene classification. International Journal of Computer Vision, 112(1), 58-79. https://doi.org/10.1007/s11263-016-0893-5
Reynolds, C. S. (2000). An introduction to the physics of accretion flows. Classical and Quantum Gravity, 17(18), 3997.
Semenov, D., Gammie, C. F., & Krolik, J. H. (2004). The dynamics of accretion disks around black holes. Astrophysical Journal, 608(2), 1172. https://doi.org/10.1086/420925
Shakura, N. I., & Sunyaev, R. A. (1973). Black holes in binary systems. Observational appearance. Astronomy and Astrophysics, 24, 337-355
Tan, P. N., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining (2nd ed.). Pearson Tchekhovskoy, A., Narayan, R., & McKinney, J. C. (2011). Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Monthly Notices of the Royal Astronomical Society: Letters, 418(1), L79-L83.
Yuan, F., & Narayan, R. (2014). Hot accretion flows around black holes. Annual Review of Astronomy and Astrophysics, 52, 529-588.
Zhang, L., & Wang, Y. (2019). Analysis of Urban Scene Images Using HSV Color Space. Pattern Recognition Letters, 35(5), 476-487. https://doi.org/10.1016/j.patrec.2019.03.006
Zhang, S., et al. (2018). Shape analysis for astronomical images: Application to galaxy morphology classification. Astronomy & Astrophysics, 617, A30.
DOI: https://doi.org/10.33258/birex.v6i4.8002
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.