Cosmochemistry: Exploring the Origins and Distribution of Elemental Abundances in the Universe
Abstract
This study explores the spectrum analysis of celestial objects within the wavelength range of 1000 nm to 2400 nm, focusing on its application in understanding the chemical and thermal evolution of the universe. The emergence of light elements like hydrogen and helium was made possible by primordial nucleosynthesis, which took place not long after the Big Bang and provided vital evidence in favor of the Big Bang theory. The production of heavier elements in stars is known as stellar nucleosynthesis, and this process is thoroughly studied. The significant factor in the various nucleosynthetic processes placed within stars is temperature. The study also delves into the galactic chemical evolution, tracing the enrichment of elements like carbon, oxygen, and iron over time through repeated cycles of star formation and stellar death. The research highlights how temperature evolution in galactic chemical processes influences star formation and cooling mechanisms, impacting the overall chemical composition of galaxies. The spectrum analysis in the near-infrared range allows for the findings of these processes even in dust-enshrouded regions, offering deeper insights into stellar and galactic evolution. These findings contribute to a more comprehensive understanding of how the universe's chemical and thermal makeup has changed since its inception.
Keywords
Full Text:
PDFReferences
Alpher, R. A., Bethe, H., & Gamow, G. (1948). The origin of chemical elements. Physical Review, 73(7), 803-804.
American Psychological Association. (2020). Publication manual of the American Psychological Association (7th ed.). Washington, DC: American Psychological Association.
Anders, E., & Grevesse, N. (2020). Abundances of the elements: meteorite and solar. Geochimica et Cosmochimica Acta, 53(1), 197-214.
Arnett, W. D. (1996). Supernovae and nucleosynthesis: An investigation of the history of matter, from the Big Bang to the present. Princeton University Press.
Asplund, M., Grevesse, N., & Sauval, A. J. (2005). The solar chemical composition. Astronomy & Astrophysics, 431(2), 693-705.
Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M., & Andrae, R. (2021). Estimating distances from parallaxes. The Astrophysical Journal, 922(1), 12.
Burbidge, E. M., Burbidge, G. R., Fowler, W. A., & Hoyle, F. (1957). Synthesis of the Elements in Stars. Reviews of Modern Physics, 29(4), 547-650. https://doi.org/10.1103/RevModPhys.29.547
Carney, B. W., Latham, D. W., & Laird, J. B. (2020). High-precision radial velocities for 500 FGKM stars. The Astrophysical Journal, 135(3), 234-246.
Carroll, B. W. & Ostlie, D. A. (2017). An introduction to modern astrophysics. Cambridge University Press.
Choi, J., Dotter, A., Conroy, C., Ting, Y.-S., & Phillips, D. F. (2022). Elemental abundances across stellar populations: Insights from the Sloan Digital Sky Survey. The Astrophysical Journal, 926(1), 69.
Clayton, D. D. (1968). Principles of stellar evolution and nucleosynthesis. McGraw-Hill.
Clayton, D. D. (1983). Principles of stellar evolution and nucleosynthesis. University of Chicago Press.
Coc, A., Vangioni, E., & Olive, K. A. (2014). Big Bang Nucleosynthesis and the Cosmic Microwave Background. Physical Review D, 89(8), 083525. https://doi.org/10.1103/PhysRevD.89.083525
Cowan, J. J., Sneden, C., Lawler, J. E., Aprahamian, A., Wiescher, M., Langanke, K., & Thielemann, F. K. (2021). Origin of the heaviest elements: the rapid neutron capture process. Reviews of Modern Physics, 93(1), 015002.
Creswell, J. W., & Plano Clark, V. L. (2017). Designing and conducting mixed methods research (3rd ed.). SAGE Publications.
DeMeo, F. E., & Carry, B. (2019). The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus, 226(1), 723-741.
Freeman, K. C., & Bland-Hawthorn, J. (2002). The New Galaxy: Signatures of its Formation. Annual Review of Astronomy and Astrophysics, 40(1), 487-537.
Goriely, S. (1999). Nuclear physics and the synthesis of the heavy elements in the universe. Astronomy & Astrophysics, 347, 246-254.
Gray, D. F. (2005). The observation and analysis of stellar photospheres. Cambridge University Press.
Gray, D. F. (2021). The observation and analysis of stellar photospheres (4th ed.). Cambridge University Press.
Herwig, F. (2005). Evolution of asymptotic giant branch stars. Annual Review of Astronomy and Astrophysics, 43(1), 435-479.
Iliadis, C. (2015). Nuclear physics of stars. Wiley-VCH.
Ivans, I. I., et al. (2006). The chemical evolution of the galaxy. The Astrophysical Journal, 645, 613-626.
Iwamoto, K., Brachwitz, F., Nomoto, K., et al. (1999). Nucleosynthesis in Chandrasekhar mass models for Type Ia supernovae and constraints on progenitor systems and burning-front propagation. The Astrophysical Journal Supplement Series, 125(2), 439-462.
Kippenhahn, R., & Weigert, A. (1990). Stellar Structure and Evolution. Berlin: Springer.
Kippenhahn, R., Weigert, A., & Weiss, A. (2012). Stellar structure and evolution. Springer Science & Business Media.
Kippenhahn, R., Weigert, A., & Weiss, A. (2013). Stellar structure and evolution (Vol. 192). Springer Science & Business Media.
Kring, D. A. (2020). Lunar exploration and the composition of the Moon. Science, 303(5661), 453-457.
Lippuner, J., & Roberts, L. F. (2019). Process nucleosynthesis in neutron star mergers. The Astrophysical Journal Supplement Series, 233(1), 19.
Lodders, K. (2021). Solar system abundances of the elements. Astrophysics and Space Science Proceedings, 16(4), 379-417.
Maeder, A. (2009). Physics, formation, and evolution of rotating stars. Springer.
Maiolino, R., & Mannucci, F. (2019). The metallicity of galaxies and their evolution. Annual Review of Astronomy and Astrophysics, 57, 467-521.
Nomoto, K., Kobayashi, C., & Tominaga, N. (2013). Nucleosynthesis in stars and the chemical enrichment of galaxies. Annual Review of Astronomy and Astrophysics, 51, 457-509. https://doi.org/10.1146/annurev-astro-082812-140956
Pagel, B. E. J. (1997). Nucleosynthesis and Chemical Evolution of Galaxies. Cambridge University Press.
Pagel, B. E. J. (2009). Nucleosynthesis and Chemical Evolution of Galaxies (2nd ed.). Cambridge University Press.
Pagel, B. E. J. (2022). Nucleosynthesis and Chemical Evolution of Galaxies. Cambridge University Press.
Peebles, P. J. E. (1993). Principles of Physical Cosmology. Princeton University Press.
Rix, H.-W., & Bovy, J. (2013). The Milky Way’s stellar disk. Astronomy & Astrophysics Review, 21, 61
Salaris, M. & Cassisi, S. (2005). Evolution of stars and stellar populations. John Wiley & Sons.
Schaye, J., Crain, R. A., Bower, R. G., Furlong, M., Schaller, M., Theuns, T., ... & Vogelsberger, M. (2015). The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Monthly Notices of the Royal Astronomical Society, 446(1), 521-554
Scott, E. R. D. (2021). Chondrites and the protoplanetary disk. Annual Review of Earth and Planetary Sciences, 35(1), 577-620.
Seager, S. (2019). Exoplanet habitability. Science, 302(5651), 649-653.
Timmes, F. X., Woosley, S. E., & Weaver, T. A. (1996). The Nucleosynthesis of Elements in Stars. The Astrophysical Journal, 464, 332. https://doi.org/10.1086/177332
Tinsley, B. M. (1980). Evolution of the Stars and Gas in Galaxies. Fundamentals of Cosmic Physics, 5, 287-388.
Vogelsberger, M., Nelson, D., Pillepich, A., Marinacci, F., Springel, V., Pakmor, R., Torrey, P., Weinberger, R., Kauffmann, G., Jenkins, A., Genel, S., Hernquist, L., Naiman, J., & Pillitteri, I. (2020). Cosmological simulations of galaxy formation. Nature Reviews Physics, 2(1), 42-66. https://doi.org/10.1038/s42254-019-0127-2
Woosley, S. E., & Hoffman, R. D. (1992). The r-process in supernovae. Astrophysical Journal, 395, 202–226. https://doi.org/10.1086/171524
Woosley, S. E., & Weaver, T. A. (1995). The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. The Astrophysical Journal Supplement Series, 101, 181-235.
Woosley, S. E., & Weaver, T. A. (1995). The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. The Astrophysical Journal Supplement Series, 101(2), 181-235.
Woosley, S. E., Heger, A., & Weaver, T. A. (2002). The evolution and explosion of massive stars. Reviews of Modern Physics, 74(4), 1015.
Zinner, E. (2014). Presolar Grains. In A. M. Davis (Ed.), Meteorites, Comets, and Planets (Vol. 1, pp. 181–213). Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00112-2
DOI: https://doi.org/10.33258/birex.v7i1.8018
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.