Modeling the Recovery Dynamics of Coronal Dimming Across Solar Activity Phases: A Theoretical Approach

Belay Sitotaw Goshu

Abstract


This study investigates the recovery of dynamics of coronal dimmings across solar activity phase. Temperature distributions, magnetic field evolution, and plasma density influence developing core and secondary dimming zones in solar and astrophysical plasma situations. Using advanced simulation techniques, we modeled the evolution of plasma density and temperature, revealing significant temperature gradients and distinct density profiles.. The results show a marked decrease in plasma density at the core regions, surrounded by secondary dimming zones, consistent with observed phenomena in solar flares and coronal mass ejections (CMEs). Thermal conduction plays a crucial role in maintaining high temperatures at the core, while radiative cooling is prominent in the outer plasma regions, contributing to the cooling and dimming effects. The study also highlights the importance of magnetic flux tubes in shaping these plasma structures, with the symmetry of the density and temperature profiles supporting the confinement of these structures. These findings contribute to a better understanding of the physical processes governing plasma behavior in astrophysical contexts such as solar flares, stellar atmospheres, and galaxy clusters. Additionally, our results emphasize the need for further multi-dimensional simulations and empirical observations to validate and expand upon these findings, ultimately providing insights into space weather phenomena and other plasma-related processes in the universe. The study's findings have potential implications for space weather forecasting, stellar physics, and plasma dynamics in various astrophysical systems.


Keywords


plasma density, temperature distribution, dimming regions, thermal conduction, radiative cooling.

Full Text:

PDF

References


Aschwanden, M. J. (2004). Physics of the Solar Corona: An Introduction with Problems and Solutions. Springer

Bradshaw, S. J., & Cargill, P. J. (2010). The importance of including the transition region in models of impulsive heating in coronal loops. The Astrophysical Journal, 710(1), L39–L42.

Biskamp, D. (2003). Magnetohydrodynamic Turbulence. Cambridge University Press.

Chen, Y., Ye, J., & Wang, L. (2021). Solar wind dynamics and energy dissipation during solar activity cycles. Astrophysical Journal, 918(2), 110.

Chen, P. F. (2020). Coronal mass ejections and their impact on the solar corona: A magnetohydrodynamic approach. Astrophysical Journal, 897(2), 25-32.

Cheng, X., Ding, M. D., & Zhang, J. (2019). Magnetohydrodynamic simulations of coronal dimming recovery and the role of magnetic reconnection. Solar Physics, 294(8), 112-121.

Deng, N., Liu, W., Sun, X., & Wang, H. (2022). On the evolution of solar coronal dimming and its magnetic environment. The Astrophysical Journal, 926(1), 19. https://doi.org/10.3847/1538-4357/ac4ee1

Dissauer, K., Veronig, A. M., Temmer, M., Podladchikova, T., & Vanninathan, K. (2018). Quantitative Analysis of Solar Coronal Dimmings. The Astrophysical Journal, 855(2), 137. https://doi.org/10.3847/1538-4357/aaadb4

Downs, C., Lionello, R., Linker, J. A., & Mikic, Z. (2015). The impact of magnetic field reconfiguration on coronal dimming recovery. Space Weather, 13(5), 313–329. https://doi.org/10.1002/2015SW001194

Fabian, A. C. (1994). Cooling flows in clusters of galaxies. Annual Review of Astronomy and Astrophysics, 32, 277-318.

Forbes, T. G. & Acton, L. W. (1996). Reconnection and field line shrinkage in solar flares. The Astrophysical Journal, 459, 330–341.

Hathaway, D. H. (2015). The solar cycle. Living Reviews in Solar Physics, 12(1), 4. https://doi.org/10.1007/lrsp-2015-4

Hudson, H. S., Cliver, E. W., & Webb, D. F. (2000). The association of coronal mass ejections with solar flares. Journal of Geophysical Research: Space Physics, 105(A12), 23165–23180.

Klimchuk, J. A. (2015). On solving the coronal heating problem. Philosophical Transactions of the Royal Society A, 373(2042), 20140256.

Kopp, R. A., & Pneuman, G. W. (1976). Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Physics, 50(1), 85–98.

Mason, J. P., Woods, T. N., & Eparvier, F. G. (2014). A New Model of Coronal Dimming Evolution and Its Implications for CME Properties. Journal of Geophysical Research: Space Physics, 119(1), 40–54. https://doi.org/10.1002/2013JA019056

Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., & Ferrari, A. (2007). PLUTO: A Numerical Code for Computational Astrophysics. The Astrophysical Journal Supplement Series, 170(1), 228–242. https://doi.org/10.1086/513316

Priest, E. R. (2014). Magnetohydrodynamics of the Sun. Cambridge University Press.

Priest, E. R. & Forbes, T. G. (2002). The magnetic nature of solar flares. Astronomy and Astrophysics Review, 10, 313-377.

Reale, F. (2014). Coronal loops: observations and modeling of confined plasma. Living Reviews in Solar Physics, 11(1), 4-17.

Reinard, A. A., & Biesecker, D. A. (2008). Coronal Dimming Associated with Coronal Mass Ejections and Flares. The Astrophysical Journal, 674(1), 576. https://doi.org/10.1086/525267

Schrijver, C. J., & Siscoe, G. L. (2009). Heliophysics: Plasma Physics of the Local Cosmos. Cambridge University Press.

Shibata, K. & Magara, T. (2011). Solar flares: magnetohydrodynamic processes. Living Reviews in Solar Physics, 8(1), 6.

Sterling, A. C., & Hudson, H. S. (1997). Yohkoh SXT observations of X-ray “dimming” associated with a halo coronal mass ejection. The Astrophysical Journal Letters, 491(1), L55–L58.

Veronig, A. M., Podladchikova, O., & Dissauer, K. (2019). Coronal dimming and mass loss due to coronal mass ejections. The Astrophysical Journal, 879(1), 85. https://doi.org/10.3847/1538-4357/ab2a15

Veronig, A. M., Temmer, M., Vršnak, B., & Thalmann, J. K. (2008). The role of magnetic reconnection in coronal mass ejections and dimmings. The Astrophysical Journal, 681(1), L113–L116.

Veronig, A. M., Temmer, M., Vrnak, B., Thalmann, J. K., & Lin, C.-H. (2006). High-Cadence Observations of Coronal Dimming Evolution. Solar Physics, 239(1), 141–161. https://doi.org/10.1007/s11207-006-0271-8

Winebarger, A. R., Warren, H. P., & Mariska, J. T. (2003). Observational signatures of multi-threaded coronal loop cooling. The Astrophysical Journal, 587(1), 439–450.

Zhang, J., Luhmann, J. G., & Zhao, X. (2020). Solar activity and its impact on Earth’s atmosphere. Reviews of Geophysics, 58(3), e2020RG000705.




DOI: https://doi.org/10.33258/birex.v7i1.8040

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 

 

Statcounter for Budapest International Research in Exact Sciences (BirEx Journal)