Integrated Phytomineral Synergy: The Essential Role of Oligoelements (Mg, Fe, K) in the Antioxidant and Anti-infective Activities of Myrothamnus moschatus

Natafita Carène Hanitriniaina, Jean Hugues Razafimahatratra, Silvère Augustin Soavina, Christian Sambany Manjovelo, Koto-Te-Nyiwa Jean Paul Ngbolua, Pierre Ruphin Fatiany, Baholy Robijaona Rahelivololoniaina

Abstract


Myrothamnus moschatus, commonly known as the "resurrection plant," stands as an emblematic species of Southern Madagascar, traditionally valued as a tonic and an anti-infective remedy. While prior investigations primarily focused on the volatile fraction (essential oils), the present study pioneers the exploration of the non-volatile mineral fraction in relation to the plant's significant biological activities. Elemental analysis of the aerial part's powder revealed a high content of magnesium (1.17%), iron (0.60%), and potassium (0.50%), with no detectable traces of heavy metals (Pb, Cd, Hg, As). Simultaneously, extracts exhibited high antioxidant activity (IC50 =12.99μg/mL), a moderate yet significant antiplasmodial inhibition (Plasmodium berghei, 34.44% at 500mg/kg ; p=0.01395), and marked antibacterial activity against Staphylococcus aureus (16.25mm). The confluence of a protective mineral profile and measured bioactivities confirms that the plant's efficacy stems not only from its secondary metabolites but also from functional inorganic cofactors, thereby establishing it as a true regenerating tradiphytoremedy. These findings reposition M. moschatus as an integrative pharmacognostic resource, paving the way for standardized phyto-mineral formulations for anti-infective and prophylactic purposes. 

Keywords


Myrothamnus moschatus; tradiphytorémède; bioactive minerals; antiplasmodial; antioxidant; antibacterial

Full Text:

PDF

References


Abubakar, A. R., & Haque, M. (2020). Preparation of Medicinal Plants : Basic Extraction and Fractionation Procedures for Experimental Purposes. Journal of Pharmacy and Bioallied Sciences, 12(1), 1‑10. https://doi.org/10.4103/jpbs.JPBS_175_19

Blois. (1958, avril 26). Antioxidant Determinations by the Use of a Stable Free radical. https://2024.scihub.se/6405/5393b9982dba034e8b7026217fbcb2b4/blois1958.pdf?download=true

Cassat, J. E., & Skaar, E. P. (2013). Iron in Infection and Immunity. Cell Host & Microbe, 13(5), 509‑519. https://doi.org/10.1016/j.chom.2013.04.010

Cazzola, R., Della Porta, M., Piuri, G., & Maier, J. A. (2024). Magnesium : A Defense Line to Mitigate Inflammation and Oxidative Stress in Adipose Tissue. Antioxidants, 13(8), 893. https://doi.org/10.3390/antiox13080893

Chandrasekaran, N. C., Weir, C., Alfraji, S., Grice, J., Roberts, M. S., & Barnard, R. T. (2014). Effects of magnesium deficiency – More than skin deep. Experimental Biology and Medicine, 239(10), 1280‑1291. https://doi.org/10.1177/1535370214537745

Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 174‑181. https://doi.org/10.1016/j.copbio.2011.08.007

Di, A., Xiong, S., Ye, Z., Malireddi, R. K. S., Kometani, S., Zhong, M., Mittal, M., Hong, Z., Kanneganti, T.-D., Rehman, J., & Malik, A. B. (2018). The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation. Immunity, 49(1), 56-65.e4. https://doi.org/10.1016/j.immuni.2018.04.032

Epstein, W. (2003). The roles and regulation of potassium in bacteria. Progress in Nucleic Acid REsearch and Molecular Biology, 75, 293‑320. https://alameed.edu.iq/DocumentPdf/Library/eBook/5370.pdf#page=304

Farrant, J. M., & Moore, J. P. (2011). Programming desiccation-tolerance : From plants to seeds to resurrection plants. Current Opinion in Plant Biology, 14(3), 340‑345. https://doi.org/10.1016/j.pbi.2011.03.018

Heinrich, M., Jalil, B., Abdel-Tawab, M., Echeverria, J., Kulić, Ž., McGaw, L. J., Pezzuto, J. M., Potterat, O., & Wang, J.-B. (2022). Best Practice in the chemical characterisation of extracts used in pharmacological and toxicological research—The ConPhyMP—Guidelines12. Frontiers in Pharmacology, 13, 953205. https://doi.org/10.3389/fphar.2022.953205

HogenEsch, H., O’Hagan, D. T., & Fox, C. B. (2018). Optimizing the utilization of aluminum adjuvants in vaccines : You might just get what you want. Npj Vaccines, 3(1), 51. https://doi.org/10.1038/s41541-018-0089-x

Kirby, william, & Bauer, A. (1966). Kirby-bauer-disk-diffusion-susceptibility-test-protocol-pdf.pdf. https://asm.org/getattachment/2594ce26-bd44-47f6-8287-0657aa9185ad/kirby-bauer-disk-diffusion-susceptibility-test-protocol-pdf.pdf

Knight, & Peters. (1980). Annals of Tropical Medicine & Parasitology. Volume 74(4). https://madadoc.irenala.edu.mg/documents/v02463_MON.pdf

Kranner, I., Beckett, R. P., Wornik, S., Zorn, M., & Pfeifhofer, H. W. (2002). Revival of a resurrection plant correlates with its antioxidant status. The Plant Journal, 31(1), 13‑24. https://doi.org/10.1046/j.1365-313X.2002.01329.x

Mukherjee, P. K. (2019). Quality Control and Evaluation of Herbal Drugs : Evaluating Natural Products and Traditional Medicine.

Newman, D. J., & Cragg, G. M. (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770‑803. https://doi.org/10.1021/acs.jnatprod.9b01285

Pavela, R., Ferrati, M., Spinozzi, E., Maggi, F., Petrelli, R., Rakotosaona, R., Ricciardi, R., & Benelli, G. (2022). The Essential Oil from the Resurrection Plant Myrothamnus moschatus Is Effective against Arthropods of Agricultural and Medical Interest. Pharmaceuticals, 15(12), 1511. https://doi.org/10.3390/ph15121511

Randrianarivo, E., Rasoanaivo, P., Nicoletti, M., Razafimahefa, S., Lefebvre, M., Papa, F., Vittori, S., & Maggi, F. (2013). Essential‐Oil Polymorphism in the ‘Resurrection Plant’ Myrothamnus moschatus and Associated Ethnobotanical Knowledge. Chemistry & Biodiversity, 10(11), 1987‑1998. https://doi.org/10.1002/cbdv.201300179

Rasoanaivo, P., Ralaibia, E., Maggi, F., Papa, F., Vittori, S., & Nicoletti, M. (2012). Phytochemical investigation of the essential oil from the ‘resurrection plant’ Myrothamnus moschatus (Baillon) Niedenzu endemic to Madagascar. Journal of Essential Oil Research, 24(3), 299‑304. https://doi.org/10.1080/10412905.2012.676801

Tsirinjara, A. S. R. (2016). Analyses des éléments minéraux en trace dans des Acanthospermum hispidum (Bakakely) à l’aide des techniques de fluorescence X à réflexion totale (TXRF).

Weltgesundheitsorganisation (Éd.). (2007). WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues. World Health Organization.

World Health Organization. (2013). WHO traditional medicine strategy : 2014-2023. World Health Organization. https://iris.who.int/handle/10665/92455

Yadav, V. K., & Fulekar, M. H. (2020). Advances in Methods for Recovery of Ferrous, Alumina, and Silica Nanoparticles from Fly Ash Waste. Ceramics, 3(3), 384‑420. https://doi.org/10.3390/ceramics3030034




DOI: https://doi.org/10.33258/birex.v7i4.8126

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 

 

Statcounter for Budapest International Research in Exact Sciences (BirEx Journal)